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Abstract—The growing market of
mobile, battery-powered elec-

tronic systems (e.g., cellular phones,
personal digital assistants, etc.) de-
mands the design of microelectronic
circuits with low power dissipation.
More generally, as density, size, and
complexity of the chips continue to in-
crease, the difficulty in providing ad-
equate cooling might either add sig-
nificant cost or limit the functionality
of the computing systems which make
use of those integrated circuits.

In the past ten years, several tech-
niques, methodologies and tools for
designing low-power circuits have
been presented in the scientific litera-
ture. However, only a few of them have
found their way in current design flows.

The purpose of this paper is to
summarize, mainly by way of
examples,what in our experience are
the most trustful approaches to low-
power design. In other words, our con-
tribution should not be intended as an
exhaustive survey of the existing litera-
ture on low-power design; rather, we
would like to provide insights a de-
signer can rely upon when power con-
sumption is a critical constraint.

We will focus solely on digital cir-
cuits, and we will restrict our attention
to CMOS devices, this technology be-
ing the most widely adopted in current
VLSI systems.

Introduction

Power dissipation has become a
critical design metric for an increas-
ingly large number of VLSI circuits.
The exploding market of portable elec-
tronic appliances fuels the demand for
complex integrated systems that can be
powered by lightweight batteries with

long times between re-charges (for in-
stance, the plot in Fig. 1 shows the
evolution of the world-wide market for
mobile phones). Additionally, system
cost must be extremely low to achieve
high market penetration. Both battery
lifetime and system cost are heavily
impacted by power dissipation. For
these reasons, the last ten years have
witnessed a soaring interest in low-
power design.

The main purpose of this paper is
to provide a few insights into the world
of low-power design. We do not intend
to review the vast literature on the
topic (the interested reader is referred
to the many available surveys, e.g., [1–
3]). Our objective is to give the read-
ers a few basic concepts to help under-
standing the “nature of the beast”, as
well as to provide “silicon-proven reci-
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Figure 1. Global market for cellular phones.

pes” for minimizing power consumption
in large-scale digital integrated circuits.

The power consumed by a circuit
is defined as p(t) = i(t)v(t), where i(t)
is the instantaneous current provided
by the power supply, and v(t) is the
instantaneous supply voltage. Power
minimization targets maximum instan-
taneous power or average power. The
latter impacts battery lifetime and heat
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dissipation system cost, the former
constrains power grid and power sup-
ply circuits design. We will focus on
average power in the remainder of the
paper, even if maximum power is also
a serious concern. A more detailed

delay product (i.e., energy) is an ac-
ceptable metric. Energy minimization
rules out design choices that heavily
compromise performance to reduce
power consumption. When perfor-
mance has priority over power con-
sumption, the energy-delay product
[4] can be adopted to tightly control
performance degradation. Alterna-
tively, we can take a constrained op-
timization approach. In this case, per-
formance degradation is acceptable up
to a given bound. Thus, power minimi-
zation requires optimal exploitation of
the slack on performance constraints.

Besides power vs. performance,
another key trade-off in VLSI design
is power vs. flexibility. Several au-
thors have observed that application-
specific designs are orders of magni-
tude more power efficient than gen-
eral-purpose systems programmed to
perform the same computation [1].
On the other hand, flexibility (pro-
grammability) is often an indispens-
able requirement, and designers must
strive to achieve maximum power
efficiency without compromising
flexibility.

The two fundamental trade-offs
outlined above motivate our selection
of effective low-power design tech-
niques and illustrative cases. We se-
lected successful low power design
examples (real-life products) from
four classes of circuits, spanning the
flexibility vs. power-efficiency trade-
off. To maintain uniformity, we chose
designs targeting the same end-mar-
ket, namely multimedia and Internet-
enabled portable appliances, where

Low Power Circuits … continued from Page 7

It is important to stress from the out-
set that power minimization is never
the only objective in real-life designs.
Performance is always a critical met-
ric that cannot be neglected. Unfortu-
nately, in most cases, power can be re-
duced at the price of some performance
degradation. For this reason, several
metrics for joint power-performance
have been proposed in the past.

analysis of the various contributions to
overall power consumption in CMOS
circuits (the dominant VLSI technology)
is provided in the following section.

It is important to stress from the
outset that power minimization is
never the only objective in real-life
designs. Performance is always a criti-
cal metric that cannot be neglected.
Unfortunately, in most cases, power
can be reduced at the price of some
performance degradation. For this rea-
son, several metrics for joint power-
performance have been proposed in
the past. In many designs, the power-
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power efficiency is not out-weighted
by performance requirements. Our il-
lustrative examples are (in order of
decreasing flexibility):

1. Transmeta’s Crusoe processor
family [5]. This design is representa-
tive of the class of general-purpose
x86-compatible processors for high-
end portable appliances, and it fea-
tures aggressive power optimizations
as key market differentiator.

2. Intel’s StrongARM family [6].
This design is representative of the
class of low-power integrated core-
and-peripherals for personal digital
assistants and palmtop computers.

3. Texas Instrument TMS320C5x
family [7]. This design is a typical
very-low power digital signal proces-
sor for baseband processing in wire-
less communication devices (i.e.,
digital cellular phones).

4. Toshiba’s MPEG4 Codec [8].
This is a typical application-specific
system-on-chip for multimedia support,
targeted for PDAs and digital cameras.

Needless to say, our selection nei-
ther implies any endorsement of the
commercial products derived from
the above mentioned designs, nor im-
plies any form of comparison or
benchmarking against competing
products.

The remainder of this paper is or-
ganized as follows. In Basic Prin-
ciples, we analyze in some detail the
sources of power consumption in
CMOS technology, and we introduce
the basic principles of power optimi-
zation. In the section Technology and
Circuit Level Optimizations we de-

. . . continued on Page 10

scribe a few successful power optimi-
zation methods at the technology and
circuit level. The section Logic and
Architecture Level Optimizations cov-
ers logic and architecture-level optimi-
zations, while Software and System
Level Optimizations deals with soft-
ware and system-level optimizations.
Whenever possible, we will describe
the optimization techniques with ref-
erence to the example designs.

Basic Principles

CMOS is, by far, the most com-
mon technology used for manufactur-
ing digital ICs. There are 3 major
sources of power dissipation in a
CMOS circuit [9]:

P = PSwitching + PShort-Circuit + PLeakage

PSwitching, called switching power, is due
to charging and discharging capacitors
driven by the circuit. PShort-Circuit, called
short-circuit power, is caused by the
short circuit currents that arise when
pairs of PMOS/NMOS transistors are
conducting simultaneously. Finally,
PLeakage, called leakage power, origi-
nates from substrate injection and sub-
threshold effects. For older technolo-
gies (0.8 µm and above), PSwitching was
predominant. For deep-submicron pro-
cesses, PLeakage becomes more important.

Design for low-power implies the
ability to reduce all three components
of power consumption in CMOS cir-
cuits during the development of a low
power electronic product. Optimiza-
tions can be achieved by facing the
power problem from different perspec-
tives: design and technology. En-
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hanced design capabilities mostly im-
pact switching and short-circuit power;
technology improvements, on the
other hand, contribute to reductions of
all three components.

Switching power for a CMOS gate
working in a synchronous environment
is modeled by the following equation:

PSwitching =  
1
2

 CLV2
DD fClockESW

where CL is the output load of the gate,
VDD is the supply voltage, fClock is the
clock frequency and ESW is the switch-
ing activity of the gate, defined as the
probability of the gate’s output to make
a logic transition during one clock
cycle. Reductions of PSwitching are achiev-
able by combining minimization of the
parameters in the equation above.

Historically, supply voltage scaling
has been the most adopted approach to
power optimization, since it normally
yields considerable savings thanks to
the quadratic dependence of PSwitching

on VDD. The major short-coming of this
solution, however, is that lowering the
supply voltage affects circuit speed. As
a consequence, both design and tech-
nological solutions must be applied in
order to compensate the decrease in
circuit performance introduced by re-
duced voltage. In other words, speed
optimization is applied first, followed
by supply voltage scaling, which
brings the design back to its original
timing, but with a lower power re-
quirement.

A similar problem, i.e., perfor-
mance decrease, is encountered when

power optimization is obtained
through frequency scaling. Tech-
niques that rely on reductions of the
clock frequency to lower power con-
sumption are thus usable under the
constraint that some performance
slack does exist. Although this may
seldom occur for designs considered
in their entirety, it happens quite of-
ten that some specific units in a larger
architecture do not require peak per-
formance for some clock/machine
cycles. Selective frequency scaling
(as well as voltage scaling) on such
units may thus be applied, at no pen-
alty in the overall system speed.

Optimization approaches that
have a lower impact on performance,
yet allowing significant power sav-
ings, are those targeting the minimi-
zation of the switched capacitance
(i.e., the product of the capacitive
load with the switching activity).
Static solutions (i.e., applicable at
design time) handle switched capaci-
tance minimization through area op-
timization (that corresponds to a de-
crease in the capacitive load) and
switching activity reduction via ex-
ploitation of different kinds of signal
correlations (temporal, spatial,
spatio-temporal). Dynamic tech-
niques, on the other hand, aim at
eliminating power wastes that may be
originated by the the application of
certain system workloads (i.e., the
data being processed).

Static and dynamic optimizations
can be achieved at different levels of
design abstraction. Actually, address-
ing the power problem from the very

Low Power Circuits … continued from Page 9
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early stages of design development
offers enhanced opportunities to ob-
tain significant reductions of the
power budget and to avoid costly re-
design steps. Power conscious design
flows must then be adopted; these
require, at each level of the design hi-
erarchy, the exploration of different
alternatives, as well as the availabil-
ity of power estimation tools that
could provide accurate feed-back on
the quality of each design choice.

In the sequel, we will follow a
bottom-up path to present power op-
timization solutions that have found
their way in the development of real-
istic designs; on the other hand, issues
related to power modeling and esti-
mation will not be covered; the inter-
ested reader may refer to survey ar-
ticles available in the literature (see,
for example, [10–13]).

Technology and Circuit Level
Optimizations

VLSI technology scaling has
evolved at an amazingly fast pace for
the last thirty years. Minimum device
size has kept shrinking by a factor k
= 0.7 per technology generation. The
basic scaling theory, known as con-
stant field scaling [14], mandates the
synergistic scaling of geometric fea-
tures and silicon doping levels to
maintain constant field across the gate
oxide of the MOS transistor. If de-
vices are constant-field scaled, power
dissipation scales as k2 and power
density (i.e., power dissipated per unit
area) remains constant, while speed
increases as k.

In a constant-field scaling regime,
silicon technology evolution is prob-
ably the most effective way to address
power issues in digital VLSI design.
Unfortunately, as shown in Fig. 2,
power consumption in real-life inte-
grated circuits does not always follow
this trend. Figure 2 shows average
power consumption and power density
trends for Intel Microprocessors, as a
function of technology generations
[14, 15]. Observe that both average
power and power density increase as
minimum feature size shrinks.

This phenomenon has two con-
comitant causes. First, die size has
been steadily increasing with technol-
ogy, causing an increase in total aver-
age power. Second, voltage supply has
not been reduced according to the di-
rectives of constant-field scaling. His-
torically, supply voltage has scaled
much more slowly than device size
because: (i) supply voltage levels have
been standardized (5 V, then 3.3 V), (ii)
faster transistor operation can be ob-
tained by allowing the electric field to
raise in the device (i.e., “overdriving”
the transistor). This approach is
known as constant voltage scaling,
and it has been adopted in older sili-
con technologies, up to the 0.8 µm
generation.

Figure 2. Power density (squares) and power (diamonds) vs. technology generation.
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ing the technology-dependent sub-
threshold slope.

Velocity saturation favors supply
down-scaling, because it implies di-
minishing returns in performance
when supply voltage is too high. On
the other hand, sub-threshold conduc-
tion limits down-scaling, because of
increased static current leaking
through nominally OFF transistors.
Intuitively, optimization of threshold
and supply voltage requires balanc-
ing ON-current and OFF-current,
while at the same time maintaining
acceptable performance. Optimizing
VDD and VT for minimum energy de-
lay product leads to surprisingly low
values of both. VDD should be only
slightly larger than 2VT, with VT a few
hundred millivolts. This approach is
known as ULP, or ultra-low-power
CMOS [16].

ULP CMOS is not widely used in
practice for two main reasons. First,
threshold control is not perfect in
real-life technology. Many transistors
may have sub-threshold currents that
are orders of magnitude larger than
expected if their threshold is slightly
smaller than nominal (remember that
sub-threshold current is exponential
in VGS). Second, sub-threshold cur-
rent is exponentially dependent on
temperature, thereby imposing tight
thermal control of ULP CMOS,
which is not cost-effective. Neverthe-
less, aggressive voltage scaling is
commonplace in low-power VLSI
circuits: voltage supply and thresh-
olds are not scaled to their ultimate
limit, but they are significantly re-

Low Power Circuits … continued from Page 11

Designing Low-Power Circuits:
Practical Recipes

Probably, the most widely known
(and successful) power-reduction tech-
nique, known as power-driven voltage
scaling [3], moves from the observa-
tion that constant-voltage scaling is
highly inefficient from the power
viewpoint, and that we can scale down
the voltage supply to trade off perfor-
mance for power. Depending on the
relative weight of performance with
respect to power consumption con-
straints, different voltage levels can be
adopted. It is important to observe,
however, that transistor speed does not
depend on supply voltage VDD alone,
but on the gate overdrive, namely the
difference between voltage supply and
device threshold voltage (VDD – VT).
Hence, several authors have studied
the problem of jointly optimizing VDD

and VT to obtain minimum energy, or
minimum energy-delay product [1, 3].

Accurate modeling of MOS tran-
sistor currents is paramount for achiev-
ing acceptable scaled VDD and VT val-
ues. The simplistic quadratic model of
CMOS ON-current IDS = S' . (VGS – VT)

2

leads to overly optimistic switching
speed estimates for submicrometric
transistors. In short-channel transis-
tors, the velocity saturation of the elec-
trons traveling between drain and
source dictates a different current
equation: IDS = S' . (VGS – VT)m, with
1 ≤ m < 2 (e.g., m = 1.3). Furthermore,
another important characteristic of
CMOS transistors is sub-threshold
conduction. When VGS < VT, the cur-
rent is not zero, but it follows an ex-
ponential law: IDS = R' . eVT/Vo, Vo be-
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duced with respect to constant-volt-
age scaling. See Example 1.

Power-driven voltage scaling was
a “low-hanging fruit” in older tech-
nologies. Unfortunately, starting from
the 0.8 µm generation, the situation
has changed. As shown in Fig. 3, sup-
ply voltage has started to decrease
with shrinking device size even for
high-performance transistors [15].
There are several technological rea-
sons for this trend, which are outside
the scope of this paper. From the
point of view of power reduction,
technology-driven voltage scaling
has two important consequences. Ag-
gressively scaled transistors with
minimum channel length are becom-
ing increasingly leaky in the OFF
state (getting closer to ULP), and
there is not much room left for fur-
ther voltage scaling.

Leakage power is already a ma-
jor concern in current technologies,
because it impacts battery lifetime
even if the circuit is completely idle.
Quiescent power specifications tend
to be very tight. In fact, CMOS tech-
nology has traditionally been ex-
tremely power-efficient when transis-
tors are not switching, and system de-
signers expect low leakage from

CMOS chips. To meet leakage power
constraints, multiple-threshold and
variable threshold circuits have been
proposed [3]. In multiple-threshold
CMOS, the process provides two dif-
ferent thresholds. Low-threshold tran-
sistors are fast and leaky, and they are
employed on speed-critical sub-cir-
cuits. High-threshold transistors are
slower but exhibit low sub-threshold
leakage, and they are employed in non-
critical units/paths of the chip.

Unfortunately, multiple-threshold
techniques tend to lose effectiveness as
more transistors become timing-criti-

Figure 3. Supply voltage (diamonds) and threshold voltage (squares) vs. technology generation.

Example 1. The StrongARM processor was first designed
in a three-metal, 0.35 µm CMOS process, which had been
originally developed for high-performance processors (the
DEC Alpha family). The first design decision was to reduce
supply voltage from 3.45 V to 1.5 V, with threshold voltage
VTN = |VTP| = 0.35 V, thus obtaining a 5.3x power reduction.
The performance loss caused by voltage scaling was accept-
able, because StrongARM has much more relaxed perfor-
mance specifications than Alpha.

As a second example, the research prototype of the
TMS320C5x DSP adopted a supply voltage VDD = 1 V in a
0.35 µm technology. The aggressive VDD value was chosen
by optimizing the energy-delay product.

. . . continued on Page 14
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cal. Variable-threshold circuits over-
come this shortcoming by dynamically
controlling the threshold voltage of
transistors through substrate biasing.
When a variable-threshold circuit be-
comes quiescent, the substrate of
NMOS transistors is negatively biased,
and their threshold increases because
of the well known body-bias effect. A
similar approach can be taken for
PMOS transistors (which require posi-
tive body bias). Variable-threshold cir-
cuits can, in principle, solve the qui-
escent leakage problem, but they re-

quire stand-by control circuits that
modulate substrate voltage. Needless
to say, accurate and fast body-bias
control is quite challenging, and re-
quires carefully designed closed-loop
control [3]. See Example 2.

In analogy with threshold volt-
age, supply voltage can also be con-
trolled to reduce power, albeit in the
limited ranges allowed in highly
scaled technologies. Multiple-voltage
and variable voltage techniques have
been developed to this purpose [3]. In
multiple-voltage circuits two or more
power supply voltages are distributed
on chip. Similarly to the multiple-
threshold scheme, timing-critical
transistors can be powered at a high
voltage, while most transistors are
connected to the low voltage supply.
Multiple voltages are also frequently
used to provide standard voltage lev-
els (e.g., 3.3 V) to input-output cir-
cuits, while powering on-chip inter-
nal logic at a much lower voltage to
save power. The main challenges in
the multiple-voltage approach are in
the design of multiple power distri-
bution grids and of power-efficient
level-shifters to interface low-volt-
ages with high-voltage sections.

Low Power Circuits … continued from Page 13

Example 2. The TMS320C5x DSP prototype adopted a
dual-threshold CMOS process, in order to provide acceptable
performance at the aggressively down-scaled supply voltage
of VDD = 1 V. The nominal threshold voltages were 0.4 V and
0.2 V for slow and fast transistors, respectively. Leakage cur-
rent for the high-VT transistors is below 1 nA/µm. For the low-
VT transistors, leakage current is below 1 µA/µm (a three-or-
ders-of-magnitude difference!). The drive current of low-VT

transistors is typically twice that of the high-VT devices.
The MPEG4 Video Codec prototype adopted the variable-

threshold voltage scheme to reduce power dissipation. Sub-
strate biasing is exploited to dynamically adjust the thresh-
old: VT is controlled to 0.2 V in active mode and to 0.55 V
when the chip is in stand-by mode.

Example 3. Supply voltage is closed-loop controlled in both the
MPEG4 Codec core and the Crusoe Processor. Supply voltage control in
the MPEG4 helps in compensating process fluctuations and operating en-
vironment changes (e.g., temperature changes). Variable-voltage operation
in Crusoe is more emphasized: it automatically lowers the supply voltage
when the processor is under-loaded. From the performance viewpoint, the
processor gradually slows down when its full performance is not needed,
but its supply voltage and clock speed are rapidly raised when the workload
increases.

In both MPEG4-core and Crusoe, frequency and power supply are syn-
ergistically adjusted thanks to a clever feed-back control loop: a replica of
the critical path is employed to estimate circuit slow-down in response to
voltage down-scaling, and clock frequency is reduced using a PLL that locks
on the new frequency.
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Variable-voltage optimizations
allow modulating the power supply
dynamically during system operation.
In principle, this is a very powerful
technique, because it gives the pos-
sibility to trade off power for speed
at run time, and to finely tune perfor-
mance and power to non-stationary
workloads. In practice, the imple-
mentation of this solution requires
considerable design ingenuity. First,
voltage changes require non-negli-
gible time, because of the large time
constants of power supply circuits.
Second, the clock speed must be var-
ied consistently with the varying
speed of the core logic, when supply
voltage is changed. Closed-loop feed-
back control schemes have been
implemented to support variable sup-
ply voltage operation. See Example 3.

The techniques based on voltage
scaling described above require
significant process and system sup-
port, which imply additional costs
that can be justified only for large-
volume applications. Less aggressive
circuit-level approaches, that do not
require ad-hoc processes can also be
successful. Among the proposals
available in the literature, library cell
design and sizing for low power have
gained wide-spread acceptance. From
the power viewpoint, probably the
most critical cells in a digital library
are the sequential primitives, namely,
latches and flip-flops. First, they are
extremely numerous in today’s
deeply pipelined circuits; and second,
they are connected to the most active
network in the chip, i.e., the clock.
Clock drivers are almost invariantly
the largest contributors to the power
budget of a chip, primarily because of
the huge capacitive load of the clock
distribution network. Flip-flop (and
latch) design for low power focuses

on minimizing clock load and reduc-
ing internal power when the clock
signal is toggled. Significant power
reductions have been achieved by
carefully designing and sizing the
flip-flops [1].

Clock power optimization is effec-
tively pursued at the circuit level also
by optimizing the power distribution
tree, the clock driver circuits and the
clock generation circuitry (on-chip
oscillators and phase-locked loops)
[3]. Higher abstraction-level ap-
proaches to clock power reduction are
surveyed in the next section. See Ex-
ample 4.

Transistor sizing is also exploited
to minimize power consumption in
combinational logic cells. Rich librar-
ies with many available transistor sizes
are very useful in low-power design,
because they help synthesis tools in
achieving optimum sizing for a wide
range of gate loads. Power savings can
be obtained by adopting non-standard
logic implementation styles such as
pass-transistor logic, which can reduce
the number of transistors (and, conse-
quently the capacitive load), for imple-
menting logic functions which are
commonly found in arithmetic units
(e.g., exclusive-or, multiplexers).

Figure 4. Low-power FF used in the StrongARM design.

Example 4. The
StrongARM proces-
sor adopted the
edge-triggered flip-
flop of Figure 4 to
reduce clock load
with respect to the
flow-through latches
used in the Alpha
processor. The flip-
flop is based on a
differential struc-
ture, similar to a
sense amplifier. No-
tice that the internal
structure of the FF is
quite complex in
comparison with the
simple flow-through
latches in Alpha.
However,the FF has
reduced clock load
(only three transis-
tors). This key ad-
vantage gave a 1.3 x
overall power re-
duction over the
latch-based design.

. . . continued on Page 16
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While most traditional power optimi-
zation techniques for logic cells focus
on minimizing switching power, cir-
cuit design for leakage power reduc-
tion is also gaining importance [17].
See Example 5.

Logic and Architecture Level
Optimizations

Logic-level power optimization
has been extensively researched in the
last few years [11, 18]. Given the com-
plexity of modern digital devices,
hand-crafted logic-level optimization
is extremely expensive in terms of de-
sign time and effort. Hence, it is cost-
effective only for structured logic in
large-volume components, like micro-
processors (e.g., functional units in the
data-path). Fortunately, several optimi-
zations for low power have been au-
tomated and are now available in com-
mercial logic synthesis tools [19], en-
abling logic-level power optimization
even for unstructured logic and for
low-volume VLSI circuits.

During logic optimization, tech-
nology parameters such as supply volt-
age are fixed, and the degrees of free-
dom are in selecting the functionality
and sizing the gates implementing a
given logic specification. As for tech-
nology and circuit-level techniques,
power is never the only cost metric of
interest. In most cases, performance is

tightly constrained as well. A com-
mon setting is constrained power op-
timization, where a logic network can
be transformed to minimize power
only if critical path length is not in-
creased. Under this hypothesis, an ef-
fective technique is based on path
equalization.

Path equalization ensures that sig-
nal propagation from inputs to out-
puts of a logic network follows paths
of similar length. When paths are
equalized, most gates have aligned
transitions at their inputs, thereby
minimizing spurious switching activ-
ity (which is created by misaligned
input transitions). This technique is
very helpful in arithmetic circuits,
such as adders of multipliers. See
Example 6.

Glue logic and controllers have
much more irregular structure than
arithmetic units, and their gate-level
implementations are characterized by
a wide distribution of path delays.
These circuits can be optimized for
power by resizing. Resizing focuses
on fast combinational paths. Gates on
fast paths are down-sized, thereby de-
creasing their input capacitances,
while at the same time slowing down
signal propagation. By slowing down
fast paths, propagation delays are
equalized, and power is reduced by
joint spurious switching and capaci-
tance reduction. Resizing does not

Low Power Circuits … continued from Page 15

Example 6. The
multiply-accumulate
(MAC) unit of the
StrongARM proces-
sor is based on a
Wallace-tree multi-
plier coupled with a
carry- lookahead
adder. The Wallace-
tree architecture was
chosen because it is
very fast, but also be-
cause it has low dy-
namic power con-
sumption in the
carry-save adder tree.
The improvement
comes from a sizable
reduction in spurious
switching, thanks to
path delay balancing
in the Wallace-tree. A
23% power reduction
(as well as a 25%
speed-up) is achieved
by the Wallace-tree
architecture with re-
spect to the array
multiplier.

Example 5. Static power minimization was a serious concern for all our example designs. In the
MPEG4 Codec, which adopted a dual supply voltage scheme, significant static power can be dissi-
pated when high-supply gates are driven by a low-supply gate, because the driver cannot completely
turn off the pull-up transistors in the fanout gates. For this reason, special level shifter cells were de-
signed that exploited a regenerative cross-coupled structure similar to a sense amplifier to restore full
swing in the high-supply section, and minimize static power.

Leakage power was the main concern in the StrongARM design, that could not benefit from mul-
tiple threshold or variable threshold control. To reduce leakage power in gates outside the critical path,
non-minimum length transistors were employed in low-leakage, low-performance cells.
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always imply down-sizing. Power
can be reduced also by enlarging (or
buffering) heavily loaded gates, to
increase their output slew rates. Fast
transitions minimize short-circuit
power of the gates in the fanout of the
gate which has been sized up, but its
input capacitance is increased. In
most cases, resizing is a complex op-
timization problem involving a trade-
off between output switching power
and internal short-circuit power on
several gates at the same time.

Other logic-level power minimi-
zation techniques are re-factoring, re-
mapping, phase assignment and pin
swapping. All these techniques can be
classified as local transformations.
They are applied on gate netlists, and
focus on nets with large switched ca-
pacitance. Most of these techniques
replace a gate, or a small group of
gates, around the target net, in an ef-
fort to reduce capacitance and switch-
ing activity. Similarly to resizing, lo-
cal transformations must carefully
balance short circuit and output
power consumption. See Example 7.

Logic-level power minimization
is relatively well studied and under-
stood. Unfortunately, due to the local

nature of most logic-level optimiza-
tions, a large number of transforma-
tions has to be applied to achieve siz-
able power savings. This is a time con-
suming and uncertain process, where
uncertainty is caused by the limited
accuracy of power estimation. In many
cases, the savings produced by a local
move are below the “noise floor” of the
power estimation engine. As a conse-
quence, logic-level optimization does

. . . continued on Page 18

Example 7. Figure 5 shows three examples of local transformations.
In Fig. 5 (a) a re-mapping transformation is shown, where a high-activity
node (marked with x) is removed thanks to a new mapping onto an and-
or gate. In Fig. 5 (b), phase assignment is exploited to eliminate one of
the two high-activity nets marked with x. Finally, pin swapping is applied
in Fig. 5 (c) to connect a high-activity net with the input pin of the 4-input
nand with minimum input capacitance.

Figure 5. Local transformations: (a) re-mapping, (b) phase assignment,
(c) pin swapping.
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not result in massive power reductions.
Savings are in the 10 to 20% range, on
average. More sizable savings can be
obtained by optimizing power at a higher
abstraction level, as detailed next.

Complex digital circuits usually
contain units (or parts thereof) that are
not performing useful computations at
every clock cycle. Think, for example,
of arithmetic units or register files
within a microprocessor or, more sim-
ply, to registers of an ordinary sequen-
tial circuit. The idea, known for a long
time in the community of IC design-
ers, is to disable the logic which is not
in use during some particular clock
cycles, with the objective of limiting
power consumption. In fact, stopping
certain units from making useless tran-
sitions causes a decrease in the over-
all switched capacitance of the system,
thus reducing the switching compo-
nent of the power dissipated. Optimi-
zation techniques based on the prin-
ciple above belong to the broad class
of dynamic power management
(DPM) methods. As briefly explained
in the section Basic Principles, they
achieve power reductions by exploit-
ing specific run-time behaviors of the
design to which they are applied.

The natural domain of applicabil-
ity of DPM is system-level design;
therefore, it will be discussed in greater
detail in the next section. Nevertheless,

this paradigm has also been success-
fully adopted in the context of archi-
tectural optimization.

Clock gating [20] provides a way
to selectively stop the clock, and thus
force the original circuit to make no
transition, whenever the computation
to be carried out by a hardware unit
at the next clock cycle is useless. In
other words, the clock signal is dis-
abled in accordance with the idle con-
ditions of the unit.

As an example of use of the
clock-gating strategy, consider the
traditional block diagram of a sequen-
tial circuit, shown on the left of Fig.
6. It consists of a combinational logic
block and an array of state registers
which are fed by the next-state logic
and which provide some feed-back
information to the combinational
block itself through the present-state
input signals. The corresponding
gated-clock architecture is shown on
the right of the figure.

The circuit is assumed to have a
single clock, and the registers are as-
sumed to be edge-triggered flip-flops.
The combinational block Fa is con-
trolled by the primary inputs, the
present-state inputs, and the primary
outputs of the circuit, and it imple-
ments the activation function of the
clock gating mechanism. Its purpose
is to selectively stop the local clock
of the circuit when no state or output

Low Power Circuits … continued from Page 17

Figure 6. Example of gated clock architecture.
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transition takes place. The block
named L is a latch, transparent when
the global clock signal CLK is inac-
tive. Its presence is essential for a cor-
rect operation of the system, since it
takes care of filtering glitches that
may occur at the output of block Fa.
It should be noted that the logic for
the activation function is on the criti-
cal path of the circuit; therefore, tim-
ing violations may occur if the syn-
thesis of Fa is not carried out properly.

The clock management logic is
synthesized from the Boolean func-
tion representing the idle conditions
of the circuit. It may well be the case
that considering all such conditions
results in additional circuitry that is
too large and power consuming. It
may then be necessary to synthesize
a simplified function, which dissi-
pates the minimum possible power,
and stops the clock with maximum
efficiency. Because of its effective-
ness, clock-gating has been applied
extensively in real designs, as shown
by the examples below, and it has
lately found its way in industry-strength
CAD tools (e.g., Power Compiler by
Synopsys). See Examples 8 and 9.

Power savings obtained by gating
the clock distribution network of

some hardware resources come at the
price of a global decrease in perfor-
mance. In fact, resuming the operation
of an inactive resource introduces a la-
tency penalty that negatively impacts
system speed. In other words, with
clock gating (or with any similar DPM
technique), performance and through-
put of an architecture are traded for
power. See Example 10.

Clock gating is not the only
scheme for implementing logic shut-
down; solutions ranging from register
disabling and usage of dual-state flip-
flops to insertion of guarding logic and
gate freezing may be equally effective,
although no industry-strength assess-
ment of these design options has been
done so far.

. . . continued on Page 20

Example 9. The MPEG4 Codec exploits software-controlled clock gat-
ing in some of its internal units, including the DMA controller and the RISC
core. Clock gating for a unit is enabled by setting the corresponding bit in
a “sleep” register of RISC through a dedicated instruction. The clock sig-
nal for the chosen hardware resource is OR-ed with the corresponding
output of the sleep register to stop clock activity.

Example 8. The TMS320C5x DSP processor exploits
clock gating to save power during active operation. In par-
ticular, a two-fold power management scheme, local and glo-
bal, is implemented. The clock signal feeding the latches
placed on the inputs of functional units is enabled only when
useful data are available at the units’ inputs, and thus mean-
ingful processing can take place. The gating signals are gen-
erated automatically by local control logic using information
coming from the instruction decoder. Global clock gating is
also available in the processor, and is controlled by the user
through dedicated power-down instructions, IDLE1, IDLE2,
and IDLE3, which target power management of increasing
strength and effectiveness. Instruction IDLE1 only stops the
CPU clock, while it leaves peripherals and system clock ac-
tive. Instruction IDLE2 also deactivates all the on-chip pe-
ripherals. Finally, instruction  IDLE3 powers down the whole
processor.

Example 10.
The latency for the
CPU of the
TMS320C5x DSP
processor to return
to active operation
from the IDLE3
mode takes around
50 µsec, due to the
need of the on-chip
PLL circuit to lock
with the external
clock generator.
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Software and System Level
Optimizations

Electronic systems and subsystems
consist of hardware platforms with
several software layers. Many system
features depend on the hardware/soft-
ware interaction, e.g., programmabil-
ity and flexibility, performance and
energy consumption.

Software does not consume energy
per se, but it is the execution and stor-
age of software that requires energy
consumption by the underlying hard-
ware. Software execution corresponds
to performing operations on hardware,
as well as accessing and storing data.
Thus, software execution involves
power dissipation for computation,
storage, and communication. More-
over, storage of computer programs in
semiconductor memories requires en-
ergy (refresh of DRAMs, static power
for SRAMs).

The energy budget for storing pro-
grams is typically small (with the choice
of appropriate components) and predict-
able at design time. Thus, we will con-
centrate on energy consumption of soft-
ware during its execution. Nevertheless,
it is important to remember that reduc-
ing the size of program, which is a
usual objective in compilation, corre-
lates with reducing their energy stor-
age costs. Additional reduction of code
size can be achieved by means of com-
pression techniques. See Example 11.

The energy cost of executing a
program depends on its machine code
and on the hardware architecture pa-
rameters. The machine code is de-
rived from the source code from com-
pilation. Typically, the energy cost of
the machine code is affected by the
back-end of software compilation,
that controls the type, number and
order of operations, and by the means
of storing data, e.g., locality (registers
vs. memory arrays), addressing, or-
der. Nevertheless, some architecture-
independent optimizations can be
useful in general to reduce energy
consumption, e.g., selective loop un-
rolling and software pipelining.

Software instructions can be char-
acterized by the number of cycles
needed to execute them and by the
energy required per cycle. The energy
consumed by an instruction depends
weakly on the state of the processor
(i.e., by the previously executed in-
struction). On the other hand, the en-
ergy varies significantly when the in-
struction requires storage in registers
or in memory (caches).

The traditional goal of a compiler
is to speed up the execution of the
generated code, by reducing the code
size (which correlates with the la-
tency of execution time) and mini-
mizing spills to memory. Interest-
ingly enough, executing machine
code of minimum size would con-
sume the minimum energy, if we ne-
glect the interaction with memory
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Example 11. Several schemes [21–23] have been proposed to store compressed instructions in main
memory and decompress them on-the-fly before execution (or when they are stored in the instruction
cache). All these techniques trade off the efficiency of the compression algorithm with the speed and
power consumption of the hardware de-compressor. Probably the best known instruction compression
approach is the “Thumb” instruction set of the ARM microprocessor family [24]. ARM cores can be
programmed using a reduced set of 16-bit instructions (in alternative to standard 32-bit RISC instruc-
tions) that reduce the required instruction memory occupation and required bandwidth by a factor of 2.
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the power consumption of a program.
Such transformation can be automated,
and can be seen as the front-end of
compilation. See Example 12.

Power-aware operating systems
(OSs) trade generality for energy
efficiency. In the case of embedded
electronic systems, OSs are stream-
lined to support just the required ap-
plications. On the other hand, such an
approach may not be applicable to OSs
for personal computers, where the user
wants to retain the ability of executing
a wide variety of applications.

Energy efficiency in an operating
system can be achieved by designing
an energy aware task scheduler. Usu-
ally, a scheduler determines the set of
start times for each task, with the goal
of optimizing a cost function related to
the completion time of all tasks, and
to satisfy real time constraints, if ap-
plicable. Since tasks are associated
with resources having specific energy
models, the scheduler can exploit this
information to reduce run-time power
consumption. See Example 13.

Operating systems achieve major
energy savings by implementing dy-
namic power management (DPM) of
the system resources. DPM dynami-
cally reconfigures an electronic system
to provide the requested services and
performance levels with a minimum
number of active components or a

. . . continued on Page 22

and we assume a uniform energy cost
of each instruction. Energy-efficient
compilation strives at achieving ma-
chine code that requires less energy
as compared to a performance-driven
traditional compiler, by leveraging
the disuniformity in instruction en-
ergy cost, and the different energy
costs for storage in registers and in
main memory due to addressing and
address decoding. Nevertheless, re-
sults are sometimes contradictory.
Whereas for some architectures en-
ergy-efficient compilation gives a
competitive advantage as compared
to traditional compilation, for some
others the most compact code is also
the most economical in terms of en-
ergy, thus obviating the need of
specific low-power compilers.

It is interesting to note that the
style of the software source program
(for any given function) affects the
energy cost. Energy-efficient soft-
ware can be achieved by enforcing
specific writing styles, or by allowing
source-code transformation to reduce

Example 12. The IBM XL
compilers transform source code
(from different languages) into
an internal form called W-code.
The Toronto Portable Optimizer
(TPO) [25] performs W-code to
W-code transformations. Some
transformations are directed to
reducing power consumption. To
this goal, switching activity is
minimized by exploiting rela-
tions among variables that take
similar values. Power-aware in-
struction scheduling can increase
the opportunity of clock gating,
by grouping instructions with
similar resource usage.

Example 13. Simultaneous multi-threading (SMT) [25]
has been proposed as an approach for the exploitation of in-
struction-level parallelism. In SMT, the processor core shares
its execution-time resources among several simultaneously ex-
ecuting threads (programs). Thus, at each cycle, instructions can
be fetched from one or more independent threads, and passed to
the issue and execution boxes. Since the resources can be filled
by instructions from parallel threads, their usage increases and
energy waste decreases. Compaq has announced that its future
21x64 designs will embrace the SMT paradigm.
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minimum load on such components
[26]. Dynamic power management
encompasses a set of techniques that
achieve energy-efficient computation
by selectively shutting down or slow-
ing down system components when
they are idle (or partially unexploited).
DPM can be implemented in different
forms including, but not limited to,
clock gating, clock throttling, supply-
voltage shut-down, and dynamically-
varying power supplies, as described
earlier in this paper.

We demonstrate here power man-
agement using two examples from ex-
isting successful processors. The
former example describes the shut down
modes of the StrongARM processor,
while the latter describes the slow
down operation within the Transmeta
Crusoe chip. See Example 14.

An operating system that controls
a power manageable component, such
as the SA-1100, needs to issue com-
mands to force the power state transi-
tions, in response to the varying
workload. The control algorithm that
issues the commands is termed policy.
An important problem is the compu-
tation of the policy for a given
workload statistics and component pa-
rameter. Several avenues to policy

computation are described in another
tutorial paper [28]. We consider next
another example, where power man-
agement is achieved by slowing
down a component. See Example 15.

We mentioned before the impor-
tant problem of computing policies,
with guaranteed optimality proper-
ties, to control one or more compo-
nents with possibly different manage-
ment schemes. A related interesting
problem is the design of components
that can be effectively power man-
aged. See Example 16.

Several system-level design
trade-offs can be explored to reduce
energy consumption. Some of these
design choices belong to the domain
of hardware/software co-design, and
leverage the migration of hardware
functions to software or vice versa.
For example, the Advanced Config-
uration and Power Interface (ACPI)
standard, initiated by Intel, Microsoft
and Toshiba, provides a portable hw/
sw interface that makes it easy to
implement DPM policies for personal
computers in software. As another
example, the decision of implement-
ing specific functions (like MPEG
decoding) on specifically-dedicated
hardware, rather than on a program-
mable processor, can significantly
affect energy consumption. As a final
interesting example, we would like to
point out that code morphing can be
a very powerful tool in reducing en-
ergy dissipation. See Example 17.

Conclusions

Electronic design aims at striking
a balance between performance and
power efficiency. Designing low-
power applications is a multi-faceted
problem, because of the plurality of
embodiments that a system specifi-
cation may have and the variety of
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Figure 7. Power state machine for the StrongARM SA-1100 processor.
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Example 14. The StrongARM SA-1100 processor [27] is an example of a
power manageable component. It has three modes of operation: run, idle,
and sleep. The run mode is the normal operating mode of the SA-1100: ev-
ery on-chip resource is functional. The chip enters the run mode after suc-
cessful power-up and reset. The idle mode allows a software application to
stop the CPU when not in use, while continuing to monitor on-chip or off-chip
interrupt requests. In the idle mode, the CPU can be brought back to the run
mode quickly when an interrupt occurs. The sleep mode offers the greatest
power savings and consequently the lowest level of available functionality. In
the transition from run or idle, the SA-1100 performs an orderly shutdown
of on-chip activity. In a transition from sleep to any other state, the chip steps
through a rather complex wake-up sequence before it can resume normal activity.

The operation of the StrongARM SA-1100 can be captured by a power state
machine model, as shown in Fig. 7. States are marked with power dissipation
and performance values, edges are marked with transition times. The power
consumed during transitions is approximately equal to that in the run mode.
Notice that both idle and sleep have null performance, but the time for ex-
iting sleep is much longer than that for exiting idle (10 µs versus 160 ms).
On the other hand, the power consumed by the chip in sleep mode (0.16 mW)
is much smaller than that in idle (50 mW).

Example 15. The Transmeta Crusoe TM5400 chip uses the Long RunR

power management scheme, that allows the OS to slow down the processor
when the workload can be serviced at a slower pace. Since a slow down in clock
frequency permits a reduction in supply voltage, then the energy to compute a
given task decreases quadratically. From a practical standpoint, the OS observes
the task queue and determines the appropriate frequency and voltage levels,
which are transmitted to the phase-locked loop (PLL) and DC-DC converter.
As a result, Transmeta claims that the Crusoe chip can play a soft DVD at the
same power level used by a conventional x86 architecture in sleep state.

Example 16. The 160-Mhz implementation of the StrongARM described
in [6] supports 16 possible operating frequencies generated by a PLL. More-
over, the PLL was designed within a power budget of 2 mW, so that it could be
kept running in the idle state. Thus, the need for a low-power PLL is dictated
by the power budget in the idle state. Note that the ability of keeping the PLL
running in the idle state is key to achieving a fast transition to the run state.

Example 17. The Transmeta Crusoe chip executes x86-compatible bina-
ries on a proprietary architecture, which is designed for low-power operation.
The operating system performs run-time binary translation to this effect. The
code morphing is key in reducing the energy cost associated with any given
program.

Designing Low-Power Circuits: Practical Recipes
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degrees of freedom that designers have
to cope with power reduction.

In this brief tutorial, we showed
different design options and the corre-
sponding advantages and disadvan-
tages. We tried to relate general-pur-
pose low-power design solutions to a
few successful chips that use them to
various extents. Even though we de-
scribed only a few samples of design
techniques and implementations, we
think that our samples are representa-
tive of the state of the art of current
technologies and can suggest future
developments and improvements.
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